本文最后更新于 2025年10月24日 晚上
                  
                
              
            
            
              
                
                
speaker:scq 同学
测度论初步 + 高等概率论初步 + GTM 274 Ch01 Gaussian Variables and Gaussian Processes
 
1. 测度论初步 
1.1 基础定义 
Definition 1.1.1(σ \sigma σ  
设 X X X M ⊆ P ( X ) \mathcal{M} \subseteq \mathcal{P}(X) M ⊆ P ( X ) P ( X ) \mathcal{P}(X) P ( X ) X X X M \mathcal{M} M 
对任意 A ∈ M A \in \mathcal{M} A ∈ M A c ∈ M A^c \in \mathcal{M} A c ∈ M  
对任意可数集族 { A n } n = 1 ∞ ⊆ M \{A_n\}_{n=1}^{\infty} \subseteq \mathcal{M} { A n  } n = 1 ∞  ⊆ M ⋃ n = 1 ∞ A n ∈ M \bigcup_{n=1}^{\infty} A_n \in \mathcal{M} ⋃ n = 1 ∞  A n  ∈ M  
 
则称 M \mathcal{M} M σ \sigma σ σ \sigma σ ( X , M ) (X, \mathcal{M}) ( X , M ) 可测空间 。
Definition 1.1.2(测度) 
设 ( X , M ) (X, \mathcal{M}) ( X , M ) X ≠ ∅ X \neq \emptyset X  = ∅ M \mathcal{M} M σ \sigma σ μ : M → [ 0 , + ∞ ] \mu: \mathcal{M} \to [0, +\infty] μ : M → [ 0 , + ∞ ] 
μ ( ∅ ) = 0 \mu(\emptyset) = 0 μ ( ∅ ) = 0 对任意可数个不相交的集合 { A n } n = 1 ∞ ⊆ M \{A_n\}_{n=1}^{\infty} \subseteq \mathcal{M} { A n  } n = 1 ∞  ⊆ M μ ( ⋃ n = 1 ∞ A n ) = ∑ n = 1 ∞ μ ( A n ) \mu\left( \bigcup_{n=1}^{\infty} A_n \right) = \sum_{n=1}^{\infty} \mu(A_n) μ ( ⋃ n = 1 ∞  A n  ) = ∑ n = 1 ∞  μ ( A n  )  
 
则称 μ \mu μ 测度 。三元组 ( X , M , μ ) (X, \mathcal{M}, \mu) ( X , M , μ ) 测度空间 。
example 1.1.3 
( R , L , m ) (\mathbb{R}, \mathcal{L}, m) ( R , L , m ) L \mathcal{L} L m m m 设 { a n } n ∈ Z \{a_n\}_{n \in \mathbb{Z}} { a n  } n ∈ Z  n ∈ Z n \in \mathbb{Z} n ∈ Z a n ≥ 0 a_n \geq 0 a n  ≥ 0 A ∈ P ( Z ) A \in \mathcal{P}(\mathbb{Z}) A ∈ P ( Z ) Z \mathbb{Z} Z μ ( A ) = ∑ k ∈ A a k \mu(A) = \sum_{k \in A} a_k μ ( A ) = ∑ k ∈ A  a k  ( Z , P ( Z ) , μ ) (\mathbb{Z}, \mathcal{P}(\mathbb{Z}), \mu) ( Z , P ( Z ) , μ )  
 
1.2 可测映射、简单函数与积分 
Definition 1.2.1(可测映射) 
设 ( X , M ) (X, \mathcal{M}) ( X , M ) ( Y , N ) (Y, \mathcal{N}) ( Y , N ) f : X → Y f: X \to Y f : X → Y B ∈ N B \in \mathcal{N} B ∈ N f − 1 ( B ) ∈ M f^{-1}(B) \in \mathcal{M} f − 1 ( B ) ∈ M f f f 可测映射 。
Remark(可测函数) :若 ( Y , N ) = ( R , B R ) (Y, \mathcal{N}) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}}) ( Y , N ) = ( R , B R  ) B R \mathcal{B}_{\mathbb{R}} B R  R \mathbb{R} R σ \sigma σ f f f 可测函数 。
Definition 1.2.2(简单函数) 
若函数 φ : X → R \varphi: X \to \mathbb{R} φ : X → R φ = ∑ i = 1 n a i I A i \varphi = \sum_{i=1}^{n} a_i \mathbb{I}_{A_i} φ = ∑ i = 1 n  a i  I A i   { A i } i = 1 n \{A_i\}_{i=1}^{n} { A i  } i = 1 n  i i i a i ∈ R a_i \in \mathbb{R} a i  ∈ R I A i \mathbb{I}_{A_i} I A i   A i A_i A i  φ \varphi φ 简单函数 。
Definition 1.2.3(非负可测函数的积分) 
设 ( X , M , μ ) (X, \mathcal{M}, \mu) ( X , M , μ ) f : X → [ 0 , + ∞ ] f: X \to [0, +\infty] f : X → [ 0 , + ∞ ] f f f μ \mu μ 
∫ f   d μ : = sup  { ∑ i = 1 n a i μ ( A i )   ∣   0 ≤ φ ≤ f ,   φ = ∑ i = 1 n a i I A i  是简单函数 } . \int f \, d\mu := \sup \left\{ \sum_{i=1}^{n} a_i \mu(A_i) \ \bigg| \ 0 \leq \varphi \leq f, \ \varphi = \sum_{i=1}^{n} a_i \mathbb{I}_{A_i} \text{ 是简单函数} \right\}.
 ∫ f d μ := sup { i = 1 ∑ n  a i  μ ( A i  )      0 ≤ φ ≤ f ,   φ = i = 1 ∑ n  a i  I A i     是简单函数 } . 
Remark :对简单函数 φ = ∑ i = 1 n a i I A i \varphi = \sum_{i=1}^{n} a_i \mathbb{I}_{A_i} φ = ∑ i = 1 n  a i  I A i   { A i } \{A_i\} { A i  } ∫ φ   d μ = ∑ i = 1 n a i μ ( A i ) \int \varphi \, d\mu = \sum_{i=1}^{n} a_i \mu(A_i) ∫ φ d μ = ∑ i = 1 n  a i  μ ( A i  ) 
Definition 1.2.4(可积函数) 
设 f : X → R f: X \to \mathbb{R} f : X → R f + : = max  { 0 , f } f^+ := \max\{0, f\} f + := max { 0 , f } f − : = max  { 0 , − f } f^- := \max\{0, -f\} f − := max { 0 , − f } ∫ f +   d μ < ∞ \int f^+ \, d\mu < \infty ∫ f + d μ < ∞ ∫ f −   d μ < ∞ \int f^- \, d\mu < \infty ∫ f − d μ < ∞ f f f 可积的 (记为 f ∈ L 1 ( μ ) f \in L^1(\mu) f ∈ L 1 ( μ ) f f f 
∫ f   d μ : = ∫ f +   d μ − ∫ f −   d μ . \int f \, d\mu := \int f^+ \, d\mu - \int f^- \, d\mu.
 ∫ f d μ := ∫ f + d μ − ∫ f − d μ . 
Remark :函数 f f f ∫ ∣ f ∣   d μ < ∞ \int |f| \, d\mu < \infty ∫ ∣ f ∣ d μ < ∞ ∣ f ∣ = f + + f − |f| = f^+ + f^- ∣ f ∣ = f + + f − ∫ ∣ f ∣   d μ < ∞ \int |f| \, d\mu < \infty ∫ ∣ f ∣ d μ < ∞ ∫ f +   d μ \int f^+ \, d\mu ∫ f + d μ ∫ f −   d μ \int f^- \, d\mu ∫ f − d μ 
1.3 几个重要定理 
Dylaaan的文章 - 实分析笔记(三):积分 
 
Theorem 1.3.1 Fatou 引理 
设 A ∈ A A \in \mathscr{A} A ∈ A f n : A → [ 0 , + ∞ ] f_n: A \to [0, +\infty] f n  : A → [ 0 , + ∞ ] μ \mu μ n = 1 , 2 , ⋯ n = 1,2,\cdots n = 1 , 2 , ⋯ 
∫ A lim inf  n → + ∞ f n d μ ≤ lim inf  n → + ∞ ∫ A f n d μ . \int_A \liminf_{n \to +\infty} f_n d\mu \leq \liminf_{n \to +\infty} \int_A f_n d\mu.
 ∫ A  n → + ∞ lim inf  f n  d μ ≤ n → + ∞ lim inf  ∫ A  f n  d μ . 
Theorem 1.3.2 Levi 单调收敛定理 
设 A ∈ A A \in \mathscr{A} A ∈ A f n , f : A → [ 0 , + ∞ ] f_n, f: A \to [0, +\infty] f n  , f : A → [ 0 , + ∞ ] μ \mu μ n = 1 , 2 , ⋯ n = 1,2,\cdots n = 1 , 2 , ⋯ f n → f f_n \to f f n  → f n → + ∞ n \to +\infty n → + ∞ { f n } \{f_n\} { f n  } 
∫ A f k d μ → ∫ A f d μ , k → + ∞ . \int_A f_k d\mu \to \int_A f d\mu,\quad k \to +\infty.
 ∫ A  f k  d μ → ∫ A  fd μ , k → + ∞. 
Theorem 1.3.3 Lebesgue 控制收敛定理 
设 A ∈ A A \in \mathscr{A} A ∈ A f n , f ∈ L 1 ( A ) f_n, f \in L^1(A) f n  , f ∈ L 1 ( A ) n = 1 , 2 , ⋯ n = 1,2,\cdots n = 1 , 2 , ⋯ f n → f f_n \to f f n  → f n → + ∞ n \to +\infty n → + ∞ g : A → [ 0 , + ∞ ] g: A \to [0, +\infty] g : A → [ 0 , + ∞ ] g ∈ L 1 ( A ) g \in L^1(A) g ∈ L 1 ( A ) n = 1 , 2 , ⋯ n = 1,2,\cdots n = 1 , 2 , ⋯ ∣ f n ∣ ≤ g |f_n| \leq g ∣ f n  ∣ ≤ g 
∫ A ∣ f n − f ∣ d μ → 0 ,   n → + ∞ , 进而 ∫ A f n d μ → ∫ A f d μ . \int_A |f_n - f| d\mu \to 0,\,n \to +\infty,\quad \text{进而}\quad \int_A f_n d\mu \to \int_A f d\mu.
 ∫ A  ∣ f n  − f ∣ d μ → 0 , n → + ∞ , 进而 ∫ A  f n  d μ → ∫ A  fd μ . 
1.4 推移测度 
Theorem 1.4.1(推移测度与变量替换公式) 
设 ( X , M , μ ) (X, \mathcal{M}, \mu) ( X , M , μ ) ( Y , N ) (Y, \mathcal{N}) ( Y , N ) h : X → Y h: X \to Y h : X → Y 推移测度  μ ∘ h − 1 : N → [ 0 , + ∞ ] \mu \circ h^{-1}: \mathcal{N} \to [0, +\infty] μ ∘ h − 1 : N → [ 0 , + ∞ ] B ∈ N B \in \mathcal{N} B ∈ N ( μ ∘ h − 1 ) ( B ) : = μ ( h − 1 ( B ) ) (\mu \circ h^{-1})(B) := \mu(h^{-1}(B)) ( μ ∘ h − 1 ) ( B ) := μ ( h − 1 ( B )) 
μ ∘ h − 1 \mu \circ h^{-1} μ ∘ h − 1 ( Y , N ) (Y, \mathcal{N}) ( Y , N ) 对任意可积函数 f : Y → R f: Y \to \mathbb{R} f : Y → R 变量替换公式  成立: 
 
∫ ( f ∘ h )   d μ = ∫ f   d ( μ ∘ h − 1 ) . \int (f \circ h) \, d\mu = \int f \, d(\mu \circ h^{-1}).
 ∫ ( f ∘ h ) d μ = ∫ f d ( μ ∘ h − 1 ) . 
证明 :
步骤1:证明 μ ∘ h − 1 \mu \circ h^{-1} μ ∘ h − 1  
 
(i)空集的测度为 0:( μ ∘ h − 1 ) ( ∅ ) = μ ( h − 1 ( ∅ ) ) = μ ( ∅ ) = 0 (\mu \circ h^{-1})(\emptyset) = \mu(h^{-1}(\emptyset)) = \mu(\emptyset) = 0 ( μ ∘ h − 1 ) ( ∅ ) = μ ( h − 1 ( ∅ )) = μ ( ∅ ) = 0 
(ii)可数可加性:设 { B n } n = 1 ∞ \{B_n\}_{n=1}^{\infty} { B n  } n = 1 ∞  N \mathcal{N} N { h − 1 ( B n ) } n = 1 ∞ \{h^{-1}(B_n)\}_{n=1}^{\infty} { h − 1 ( B n  ) } n = 1 ∞  M \mathcal{M} M 
因为原像保持不相交性:对 n ≠ m n \neq m n  = m h − 1 ( B n ) ∩ h − 1 ( B m ) = h − 1 ( B n ∩ B m ) = h − 1 ( ∅ ) = ∅ h^{-1}(B_n) \cap h^{-1}(B_m) = h^{-1}(B_n \cap B_m) = h^{-1}(\emptyset) = \emptyset h − 1 ( B n  ) ∩ h − 1 ( B m  ) = h − 1 ( B n  ∩ B m  ) = h − 1 ( ∅ ) = ∅ 
 
因此,
( μ ∘ h − 1 ) ( ⋃ n = 1 ∞ B n ) = μ ( h − 1 ( ⋃ n = 1 ∞ B n ) ) = μ ( ⋃ n = 1 ∞ h − 1 ( B n ) ) = ∑ n = 1 ∞ μ ( h − 1 ( B n ) ) = ∑ n = 1 ∞ ( μ ∘ h − 1 ) ( B n ) . (\mu \circ h^{-1})\left( \bigcup_{n=1}^{\infty} B_n \right) = \mu\left( h^{-1}\left( \bigcup_{n=1}^{\infty} B_n \right) \right) = \mu\left( \bigcup_{n=1}^{\infty} h^{-1}(B_n) \right) = \sum_{n=1}^{\infty} \mu(h^{-1}(B_n)) = \sum_{n=1}^{\infty} (\mu \circ h^{-1})(B_n).
 ( μ ∘ h − 1 ) ( n = 1 ⋃ ∞  B n  ) = μ ( h − 1 ( n = 1 ⋃ ∞  B n  ) ) = μ ( n = 1 ⋃ ∞  h − 1 ( B n  ) ) = n = 1 ∑ ∞  μ ( h − 1 ( B n  )) = n = 1 ∑ ∞  ( μ ∘ h − 1 ) ( B n  ) . 
故 μ ∘ h − 1 \mu \circ h^{-1} μ ∘ h − 1 
步骤2:证明变量替换公式。 
 
分阶段证明:
情形1:  f f f Y Y Y 
设 f = ∑ i = 1 k c i I B i f = \sum_{i=1}^{k} c_i \mathbb{I}_{B_i} f = ∑ i = 1 k  c i  I B i   { B i } i = 1 k \{B_i\}_{i=1}^{k} { B i  } i = 1 k  N \mathcal{N} N c i ∈ R c_i \in \mathbb{R} c i  ∈ R f ∘ h = ∑ i = 1 k c i I h − 1 ( B i ) f \circ h = \sum_{i=1}^{k} c_i \mathbb{I}_{h^{-1}(B_i)} f ∘ h = ∑ i = 1 k  c i  I h − 1 ( B i  )  X X X 
∫ ( f ∘ h )   d μ = ∑ i = 1 k c i μ ( h − 1 ( B i ) ) = ∑ i = 1 k c i ( μ ∘ h − 1 ) ( B i ) = ∫ f   d ( μ ∘ h − 1 ) . \int (f \circ h) \, d\mu = \sum_{i=1}^{k} c_i \mu(h^{-1}(B_i)) = \sum_{i=1}^{k} c_i (\mu \circ h^{-1})(B_i) = \int f \, d(\mu \circ h^{-1}).
 ∫ ( f ∘ h ) d μ = i = 1 ∑ k  c i  μ ( h − 1 ( B i  )) = i = 1 ∑ k  c i  ( μ ∘ h − 1 ) ( B i  ) = ∫ f d ( μ ∘ h − 1 ) . 
情形2:  f f f Y Y Y 
任何非负可测函数都可表示为一列递增的非负简单函数的极限,即存在非负简单函数列 { f n } n = 1 ∞ \{f_n\}_{n=1}^\infty { f n  } n = 1 ∞  f n ↑ f f_n \uparrow f f n  ↑ f f f f f n f_n f n  ∫ ( f n ∘ h ) d μ = ∫ f n d ( μ ∘ h − 1 ) \int (f_n \circ h) d\mu = \int f_n d(\mu \circ h^{-1}) ∫ ( f n  ∘ h ) d μ = ∫ f n  d ( μ ∘ h − 1 ) 
左边应用单调收敛定理(MCT):因 f n ↑ f f_n \uparrow f f n  ↑ f f n ∘ h ↑ f ∘ h f_n \circ h \uparrow f \circ h f n  ∘ h ↑ f ∘ h 
lim  n → ∞ ∫ ( f n ∘ h ) d μ = ∫ ( f ∘ h ) d μ . \lim_{n \to \infty} \int (f_n \circ h) d\mu = \int (f \circ h) d\mu.
 n → ∞ lim  ∫ ( f n  ∘ h ) d μ = ∫ ( f ∘ h ) d μ . 
右边应用单调收敛定理(MCT):因 f n ↑ f f_n \uparrow f f n  ↑ f 
lim  n → ∞ ∫ f n d ( μ ∘ h − 1 ) = ∫ f d ( μ ∘ h − 1 ) . \lim_{n \to \infty} \int f_n d(\mu \circ h^{-1}) = \int f d(\mu \circ h^{-1}).
 n → ∞ lim  ∫ f n  d ( μ ∘ h − 1 ) = ∫ fd ( μ ∘ h − 1 ) . 
两边极限相等,故非负可测函数情形下公式成立。
情形3:  f f f Y Y Y 
将 f f f f = f + − f − f = f^+ - f^- f = f + − f − f + , f − f^+, f^- f + , f − 
f ∘ h = ( f + ∘ h ) − ( f − ∘ h ) f \circ h = (f^+ \circ h) - (f^- \circ h)
 f ∘ h = ( f + ∘ h ) − ( f − ∘ h ) 
由情形2,∫ ( f + ∘ h )   d μ = ∫ f +   d ( μ ∘ h − 1 ) \int (f^+ \circ h) \, d\mu = \int f^+ \, d(\mu \circ h^{-1}) ∫ ( f + ∘ h ) d μ = ∫ f + d ( μ ∘ h − 1 ) ∫ ( f − ∘ h )   d μ = ∫ f −   d ( μ ∘ h − 1 ) \int (f^- \circ h) \, d\mu = \int f^- \, d(\mu \circ h^{-1}) ∫ ( f − ∘ h ) d μ = ∫ f − d ( μ ∘ h − 1 ) 
因 f f f ∫ f +   d ( μ ∘ h − 1 ) < ∞ \int f^+ \, d(\mu \circ h^{-1}) < \infty ∫ f + d ( μ ∘ h − 1 ) < ∞ ∫ f −   d ( μ ∘ h − 1 ) < ∞ \int f^- \, d(\mu \circ h^{-1}) < \infty ∫ f − d ( μ ∘ h − 1 ) < ∞ 
∫ ( f ∘ h )   d μ = ∫ ( f + ∘ h )   d μ − ∫ ( f − ∘ h )   d μ = ∫ f +   d ( μ ∘ h − 1 ) − ∫ f −   d ( μ ∘ h − 1 ) = ∫ f   d ( μ ∘ h − 1 ) . \begin{align*}
\int (f \circ h) \, d\mu &= \int (f^+ \circ h) \, d\mu - \int (f^- \circ h) \, d\mu \\
&= \int f^+ \, d(\mu \circ h^{-1}) - \int f^- \, d(\mu \circ h^{-1}) \\
&= \int f \, d(\mu \circ h^{-1}).
\end{align*}
 ∫ ( f ∘ h ) d μ  = ∫ ( f + ∘ h ) d μ − ∫ ( f − ∘ h ) d μ = ∫ f + d ( μ ∘ h − 1 ) − ∫ f − d ( μ ∘ h − 1 ) = ∫ f d ( μ ∘ h − 1 ) .  
□
2. 高等概率论初步 
参考书:《Probability: Theory and Examples》- Rick Durrett (Fifth Edition)
 
2.1 概率空间 
概率空间  (probability space) 是一个三元组 ( Ω , F , P ) (\Omega, \mathcal{F}, P) ( Ω , F , P ) Ω \Omega Ω F \mathcal{F} F P : F → [ 0 , 1 ] P: \mathcal{F} \to [0,1] P : F → [ 0 , 1 ] F \mathcal{F} F σ \sigma σ σ \sigma σ Ω \Omega Ω 
(i) 若 A ∈ F A \in \mathcal{F} A ∈ F A c ∈ F A^c \in \mathcal{F} A c ∈ F  
(ii) 若 A i ∈ F A_i \in \mathcal{F} A i  ∈ F ⋃ i A i ∈ F \bigcup_i A_i \in \mathcal{F} ⋃ i  A i  ∈ F  
 
这里及以下,“可数 ” 指有限或可数无限。由于 ⋂ i A i = ( ⋃ i A i c ) c \bigcap_i A_i = (\bigcup_i A_i^c)^c ⋂ i  A i  = ( ⋃ i  A i c  ) c σ \sigma σ 
不考虑 P P P ( Ω , F ) (\Omega, \mathcal{F}) ( Ω , F ) 可测空间  (measurable space),即可以在其上定义测度的空间。测度  (measure) 是一个非负可数可加集函数;即,一个函数 μ : F → R \mu: \mathcal{F} \to \mathbb{R} μ : F → R 
(i) 对所有 A ∈ F A \in \mathcal{F} A ∈ F μ ( A ) ≥ μ ( ∅ ) = 0 \mu(A) \geq \mu(\emptyset) = 0 μ ( A ) ≥ μ ( ∅ ) = 0  
(ii) 若 A i ∈ F A_i \in \mathcal{F} A i  ∈ F  
 
μ ( ⋃ i A i ) = ∑ i μ ( A i ) \mu(\bigcup_i A_i) = \sum_i \mu(A_i)
 μ ( i ⋃  A i  ) = i ∑  μ ( A i  ) 
若 μ ( Ω ) = 1 \mu(\Omega) = 1 μ ( Ω ) = 1 μ \mu μ 概率测度  (probability measure)。概率测度通常记为 P P P 
下一个结果给出了我们稍后会用到的测度定义的一些推论。在所有情况下,我们假设提到的集合都在 F \mathcal{F} F 
Theorem 2.1.1 
设 μ \mu μ ( Ω , F ) (\Omega, \mathcal{F}) ( Ω , F ) 
(i) 单调性  (monotonicity)
若 A ⊂ B A \subset B A ⊂ B μ ( A ) ≤ μ ( B ) \mu(A) \leq \mu(B) μ ( A ) ≤ μ ( B )  
 
 
(ii) 次可加性  (subadditivity)
若 A ⊂ ⋃ m = 1 ∞ A m A \subset \bigcup_{m=1}^\infty A_m A ⊂ ⋃ m = 1 ∞  A m  μ ( A ) ≤ ∑ m = 1 ∞ μ ( A m ) \mu(A) \leq \sum_{m=1}^\infty \mu(A_m) μ ( A ) ≤ ∑ m = 1 ∞  μ ( A m  )  
 
 
(iii) 下连续性  (continuity from below)
若 A i ↑ A A_i \uparrow A A i  ↑ A A 1 ⊂ A 2 ⊂ … A_1 \subset A_2 \subset \dots A 1  ⊂ A 2  ⊂ … ⋃ i A i = A \bigcup_i A_i = A ⋃ i  A i  = A μ ( A i ) ↑ μ ( A ) \mu(A_i) \uparrow \mu(A) μ ( A i  ) ↑ μ ( A )  
 
 
(iv) 上连续性  (continuity from above)
若 A i ↓ A A_i \downarrow A A i  ↓ A A 1 ⊃ A 2 ⊃ … A_1 \supset A_2 \supset \dots A 1  ⊃ A 2  ⊃ … ⋂ i A i = A \bigcap_i A_i = A ⋂ i  A i  = A μ ( A 1 ) < ∞ \mu(A_1) < \infty μ ( A 1  ) < ∞ μ ( A i ) ↓ μ ( A ) \mu(A_i) \downarrow \mu(A) μ ( A i  ) ↓ μ ( A )  
 
 
 
Example 2.1.2(离散概率空间) 
设 Ω \Omega Ω F \mathcal{F} F Ω \Omega Ω 
P ( A ) = ∑ ω ∈ A p ( ω ) ,  其中  p ( ω ) ≥ 0  且  ∑ ω ∈ Ω p ( ω ) = 1 P(A) = \sum_{\omega \in A} p(\omega), \text{ 其中 } p(\omega) \geq 0 \text{ 且 } \sum_{\omega \in \Omega} p(\omega) = 1
 P ( A ) = ω ∈ A ∑  p ( ω ) ,   其中   p ( ω ) ≥ 0   且   ω ∈ Ω ∑  p ( ω ) = 1 
稍加思考就会发现,这是该空间上最一般的概率测度。在许多情况下,当 Ω \Omega Ω p ( ω ) = 1 / ∣ Ω ∣ p(\omega) = 1/|\Omega| p ( ω ) = 1/∣Ω∣ ∣ Ω ∣ |\Omega| ∣Ω∣ Ω \Omega Ω 
为了准备下一个定义,我们需要注意,由定义可轻易推出:若 F i \mathcal{F}_i F i  i ∈ I i \in I i ∈ I σ \sigma σ ⋂ i ∈ I F i \bigcap_{i \in I} \mathcal{F}_i ⋂ i ∈ I  F i  σ \sigma σ I ≠ ∅ I \neq \emptyset I  = ∅ Ω \Omega Ω Ω \Omega Ω A \mathcal{A} A A \mathcal{A} A σ \sigma σ 由 A \mathcal{A} A σ \sigma σ  ,记为 σ ( A ) \sigma(\mathcal{A}) σ ( A ) 
设 R d \mathbb{R}^d R d ( x 1 , … , x d ) (x_1, \dots, x_d) ( x 1  , … , x d  ) R d \mathcal{R}^d R d Borel 集 ,即包含所有开集的最小 σ \sigma σ d = 1 d=1 d = 1 
Example 2.1.3(实直线上的测度) 
( R , R ) (\mathbb{R}, \mathcal{R}) ( R , R ) Stieltjes 测度函数  定义:
(i) F F F  
(ii) F F F lim  y ↓ x F ( y ) = F ( x ) \lim_{y \downarrow x} F(y) = F(x) lim y ↓ x  F ( y ) = F ( x )  
 
Theorem 2.1.4 
与每个 Stieltjes 测度函数 F F F ( R , R ) (\mathbb{R}, \mathcal{R}) ( R , R ) μ \mu μ μ ( ( a , b ] ) = F ( b ) − F ( a ) \mu((a, b]) = F(b) - F(a) μ (( a , b ]) = F ( b ) − F ( a ) 
μ ( ( a , b ] ) = F ( b ) − F ( a ) (1.1.1) \mu((a, b]) = F(b) - F(a) \tag{1.1.1}
 μ (( a , b ]) = F ( b ) − F ( a ) ( 1.1.1 ) 
当 F ( x ) = x F(x) = x F ( x ) = x 勒贝格测度 。
Remark:  在 ( a , b ] (a, b] ( a , b ] b n ↓ b b_n \downarrow b b n  ↓ b 
⋂ n ( a , b n ] = ( a , b ] \bigcap_n (a, b_n] = (a, b]
 n ⋂  ( a , b n  ] = ( a , b ] 
2.2 独立性 
Definition 2.2.1(σ \sigma σ  
设 F 1 , F 2 , … , F n \mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_n F 1  , F 2  , … , F n  σ \sigma σ A i ∈ F i A_i \in \mathcal{F}_i A i  ∈ F i  i = 1 , 2 , … , n i = 1, 2, \dots, n i = 1 , 2 , … , n 
P ( ⋂ i = 1 n A i ) = ∏ i = 1 n P ( A i ) P\left( \bigcap_{i=1}^n A_i \right) = \prod_{i=1}^n P(A_i)
 P ( i = 1 ⋂ n  A i  ) = i = 1 ∏ n  P ( A i  ) 
则称 F 1 , … , F n \mathcal{F}_1, \dots, \mathcal{F}_n F 1  , … , F n  相互独立 。
Definition 2.2.2(随机变量的独立性) 
设 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X 1  , X 2  , … , X n  σ \sigma σ σ ( X 1 ) , σ ( X 2 ) , … , σ ( X n ) \sigma(X_1), \sigma(X_2), \dots, \sigma(X_n) σ ( X 1  ) , σ ( X 2  ) , … , σ ( X n  ) X 1 , … , X n X_1, \dots, X_n X 1  , … , X n  相互独立 。
Definition 2.2.3(集合的独立性) 
设 A 1 , A 2 , … , A n A_1, A_2, \dots, A_n A 1  , A 2  , … , A n  I ⊆ { 1 , 2 , … , n } I \subseteq \{1, 2, \dots, n\} I ⊆ { 1 , 2 , … , n } 
P ( ⋂ i ∈ I A i ) = ∏ i ∈ I P ( A i ) P\left( \bigcap_{i \in I} A_i \right) = \prod_{i \in I} P(A_i)
 P ( i ∈ I ⋂  A i  ) = i ∈ I ∏  P ( A i  ) 
则称 A 1 , … , A n A_1, \dots, A_n A 1  , … , A n  相互独立 。
Definition 2.2.4(集族的独立性) 
设 A 1 , A 2 , … , A n \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n A 1  , A 2  , … , A n  I ⊆ { 1 , 2 , … , n } I \subseteq \{1, 2, \dots, n\} I ⊆ { 1 , 2 , … , n } A i ∈ A i A_i \in \mathcal{A}_i A i  ∈ A i  i ∈ I i \in I i ∈ I 
P ( ⋂ i ∈ I A i ) = ∏ i ∈ I P ( A i ) P\left( \bigcap_{i \in I} A_i \right) = \prod_{i \in I} P(A_i)
 P ( i ∈ I ⋂  A i  ) = i ∈ I ∏  P ( A i  ) 
则称 A 1 , … , A n \mathcal{A}_1, \dots, \mathcal{A}_n A 1  , … , A n  相互独立 。
2.3 π \pi π λ \lambda λ  
Definition 2.3.1(π \pi π  
设 P \mathcal{P} P P \mathcal{P} P 有限交运算封闭 (即对任意 A , B ∈ P A, B \in \mathcal{P} A , B ∈ P A ∩ B ∈ P A \cap B \in \mathcal{P} A ∩ B ∈ P P \mathcal{P} P π \pi π 
Definition 2.3.2(λ \lambda λ  
设 L \mathcal{L} L L \mathcal{L} L 
Ω ∈ L \Omega \in \mathcal{L} Ω ∈ L 对差运算封闭:若 A , B ∈ L A, B \in \mathcal{L} A , B ∈ L A ⊆ B A \subseteq B A ⊆ B B ∖ A ∈ L B \setminus A \in \mathcal{L} B ∖ A ∈ L  
对递增序列的并封闭:若 { A n } ⊆ L \{A_n\} \subseteq \mathcal{L} { A n  } ⊆ L A n ↑ A A_n \uparrow A A n  ↑ A A 1 ⊆ A 2 ⊆ … A_1 \subseteq A_2 \subseteq \dots A 1  ⊆ A 2  ⊆ … ⋃ n = 1 ∞ A n = A \bigcup_{n=1}^\infty A_n = A ⋃ n = 1 ∞  A n  = A A ∈ L A \in \mathcal{L} A ∈ L L \mathcal{L} L λ \lambda λ  
 
Theorem 2.3.3(Dynkin π \pi π λ \lambda λ  
设 P \mathcal{P} P π \pi π L \mathcal{L} L λ \lambda λ P ⊆ L \mathcal{P} \subseteq \mathcal{L} P ⊆ L σ ( P ) ⊆ L \sigma(\mathcal{P}) \subseteq \mathcal{L} σ ( P ) ⊆ L σ ( P ) \sigma(\mathcal{P}) σ ( P ) P \mathcal{P} P σ \sigma σ 
证明: 
记 L ( P ) \mathcal{L}(\mathcal{P}) L ( P ) P \mathcal{P} P 最小 λ \lambda λ  (即所有包含 P \mathcal{P} P λ \lambda λ λ \lambda λ L ( P ) \mathcal{L}(\mathcal{P}) L ( P ) σ \sigma σ 
证明 L ( P ) \mathcal{L}(\mathcal{P}) L ( P )  :A ∈ L ( P ) A \in \mathcal{L}(\mathcal{P}) A ∈ L ( P ) G ( A ) = { B ∈ L ( P ) ∣ A ∩ B ∈ L ( P ) } \mathcal{G}(A) = \{ B \in \mathcal{L}(\mathcal{P}) \mid A \cap B \in \mathcal{L}(\mathcal{P}) \} G ( A ) = { B ∈ L ( P ) ∣ A ∩ B ∈ L ( P )} G ( A ) \mathcal{G}(A) G ( A ) λ \lambda λ 
(包含全空间)Ω ∈ G ( A ) \Omega \in \mathcal{G}(A) Ω ∈ G ( A ) A ∩ Ω = A ∈ L ( P ) A \cap \Omega = A \in \mathcal{L}(\mathcal{P}) A ∩ Ω = A ∈ L ( P )  
(差运算封闭)若 B 1 ⊆ B 2 B_1 \subseteq B_2 B 1  ⊆ B 2  B 1 , B 2 ∈ G ( A ) B_1, B_2 \in \mathcal{G}(A) B 1  , B 2  ∈ G ( A ) A ∩ ( B 2 ∖ B 1 ) = ( A ∩ B 2 ) ∖ ( A ∩ B 1 ) A \cap (B_2 \setminus B_1) = (A \cap B_2) \setminus (A \cap B_1) A ∩ ( B 2  ∖ B 1  ) = ( A ∩ B 2  ) ∖ ( A ∩ B 1  ) B 1 , B 2 ∈ G ( A ) B_1, B_2 \in \mathcal{G}(A) B 1  , B 2  ∈ G ( A ) A ∩ B 1 , A ∩ B 2 ∈ L ( P ) A \cap B_1, A \cap B_2 \in \mathcal{L}(\mathcal{P}) A ∩ B 1  , A ∩ B 2  ∈ L ( P ) A ∩ B 1 ⊆ A ∩ B 2 A \cap B_1 \subseteq A \cap B_2 A ∩ B 1  ⊆ A ∩ B 2  λ \lambda λ ( A ∩ B 2 ) ∖ ( A ∩ B 1 ) ∈ L ( P ) (A \cap B_2) \setminus (A \cap B_1) \in \mathcal{L}(\mathcal{P}) ( A ∩ B 2  ) ∖ ( A ∩ B 1  ) ∈ L ( P ) B 2 ∖ B 1 ∈ G ( A ) B_2 \setminus B_1 \in \mathcal{G}(A) B 2  ∖ B 1  ∈ G ( A )  
(递增并封闭)若 { B n } ⊆ G ( A ) \{B_n\} \subseteq \mathcal{G}(A) { B n  } ⊆ G ( A ) B n ↑ B B_n \uparrow B B n  ↑ B A ∩ B n ↑ A ∩ B A \cap B_n \uparrow A \cap B A ∩ B n  ↑ A ∩ B λ \lambda λ A ∩ B ∈ L ( P ) A \cap B \in \mathcal{L}(\mathcal{P}) A ∩ B ∈ L ( P ) B ∈ G ( A ) B \in \mathcal{G}(A) B ∈ G ( A )  
 
因此,G ( A ) \mathcal{G}(A) G ( A ) λ \lambda λ 
若 A ∈ P A \in \mathcal{P} A ∈ P B ∈ P B \in \mathcal{P} B ∈ P A ∩ B ∈ P ⊆ L ( P ) A \cap B \in \mathcal{P} \subseteq \mathcal{L}(\mathcal{P}) A ∩ B ∈ P ⊆ L ( P ) P ⊆ G ( A ) \mathcal{P} \subseteq \mathcal{G}(A) P ⊆ G ( A ) L ( P ) \mathcal{L}(\mathcal{P}) L ( P ) P \mathcal{P} P λ \lambda λ L ( P ) ⊆ G ( A ) \mathcal{L}(\mathcal{P}) \subseteq \mathcal{G}(A) L ( P ) ⊆ G ( A ) A ∈ P A \in \mathcal{P} A ∈ P B ∈ L ( P ) B \in \mathcal{L}(\mathcal{P}) B ∈ L ( P ) A ∩ B ∈ L ( P ) A \cap B \in \mathcal{L}(\mathcal{P}) A ∩ B ∈ L ( P )  
若 B ∈ L ( P ) B \in \mathcal{L}(\mathcal{P}) B ∈ L ( P ) A ∈ P A \in \mathcal{P} A ∈ P A ∩ B ∈ L ( P ) A \cap B \in \mathcal{L}(\mathcal{P}) A ∩ B ∈ L ( P ) P ⊆ G ( B ) \mathcal{P} \subseteq \mathcal{G}(B) P ⊆ G ( B ) L ( P ) ⊆ G ( B ) \mathcal{L}(\mathcal{P}) \subseteq \mathcal{G}(B) L ( P ) ⊆ G ( B ) A , B ∈ L ( P ) A, B \in \mathcal{L}(\mathcal{P}) A , B ∈ L ( P ) A ∩ B ∈ L ( P ) A \cap B \in \mathcal{L}(\mathcal{P}) A ∩ B ∈ L ( P ) L ( P ) \mathcal{L}(\mathcal{P}) L ( P )  
 
 
证明 L ( P ) \mathcal{L}(\mathcal{P}) L ( P ) σ \sigma σ  :σ \sigma σ 
(包含全空间)Ω ∈ L ( P ) \Omega \in \mathcal{L}(\mathcal{P}) Ω ∈ L ( P ) λ \lambda λ  
(补集封闭)对 A ∈ L ( P ) A \in \mathcal{L}(\mathcal{P}) A ∈ L ( P ) B = Ω ∖ A B = \Omega \setminus A B = Ω ∖ A A ⊆ Ω A \subseteq \Omega A ⊆ Ω B ∈ L ( P ) B \in \mathcal{L}(\mathcal{P}) B ∈ L ( P )  
(可数并封闭)对可数个 A n ∈ L ( P ) A_n \in \mathcal{L}(\mathcal{P}) A n  ∈ L ( P ) B 1 = A 1 B_1 = A_1 B 1  = A 1  B k = A k ∖ ⋃ i = 1 k − 1 A i B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i B k  = A k  ∖ ⋃ i = 1 k − 1  A i  k ≥ 2 k \geq 2 k ≥ 2 B k B_k B k  ⋃ n = 1 ∞ A n = ⋃ n = 1 ∞ B n \bigcup_{n=1}^\infty A_n = \bigcup_{n=1}^\infty B_n ⋃ n = 1 ∞  A n  = ⋃ n = 1 ∞  B n  B k ∈ L ( P ) B_k \in \mathcal{L}(\mathcal{P}) B k  ∈ L ( P ) C n = ⋃ i = 1 n B i ↑ ⋃ n = 1 ∞ B n C_n = \bigcup_{i=1}^n B_i \uparrow \bigcup_{n=1}^\infty B_n C n  = ⋃ i = 1 n  B i  ↑ ⋃ n = 1 ∞  B n  ⋃ n = 1 ∞ A n ∈ L ( P ) \bigcup_{n=1}^\infty A_n \in \mathcal{L}(\mathcal{P}) ⋃ n = 1 ∞  A n  ∈ L ( P )  
 
因此,L ( P ) \mathcal{L}(\mathcal{P}) L ( P ) σ \sigma σ σ ( P ) \sigma(\mathcal{P}) σ ( P ) P \mathcal{P} P σ \sigma σ σ ( P ) ⊆ L ( P ) ⊆ L \sigma(\mathcal{P}) \subseteq \mathcal{L}(\mathcal{P}) \subseteq \mathcal{L} σ ( P ) ⊆ L ( P ) ⊆ L 
 
 
Theorem 2.3.4(π \pi π λ \lambda λ  
设 A 1 , A 2 , … , A n \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n A 1  , A 2  , … , A n  A i \mathcal{A}_i A i  π \pi π σ \sigma σ σ ( A 1 ) , σ ( A 2 ) , … , σ ( A n ) \sigma(\mathcal{A}_1), \sigma(\mathcal{A}_2), \dots, \sigma(\mathcal{A}_n) σ ( A 1  ) , σ ( A 2  ) , … , σ ( A n  ) 
证明 :对 n n n n = 2 n = 2 n = 2 n n n 
步骤1:n = 2 n = 2 n = 2 L 1 = { A 1 ∣ A 1 , A 2  独立对任意  A 2 ∈ A 2 } \mathcal{L}_1 = \left\{ A_1 \mid A_1, A_2 \text{ 独立对任意 } A_2 \in \mathcal{A}_2 \right\} L 1  = { A 1  ∣ A 1  , A 2    独立对任意   A 2  ∈ A 2  } L 1 \mathcal{L}_1 L 1  λ \lambda λ A 1 \mathcal{A}_1 A 1  
 
(包含全空间)Ω ∈ L 1 \Omega \in \mathcal{L}_1 Ω ∈ L 1  A 2 ∈ A 2 A_2 \in \mathcal{A}_2 A 2  ∈ A 2  P ( Ω ∩ A 2 ) = P ( A 2 ) = P ( Ω ) P ( A 2 ) P(\Omega \cap A_2) = P(A_2) = P(\Omega)P(A_2) P ( Ω ∩ A 2  ) = P ( A 2  ) = P ( Ω ) P ( A 2  )  
(差运算封闭)若 A 1 1 ⊆ A 1 2 A_1^1 \subseteq A_1^2 A 1 1  ⊆ A 1 2  A 1 1 , A 1 2 ∈ L 1 A_1^1, A_1^2 \in \mathcal{L}_1 A 1 1  , A 1 2  ∈ L 1  A 2 ∈ A 2 A_2 \in \mathcal{A}_2 A 2  ∈ A 2  P ( ( A 1 2 ∖ A 1 1 ) ∩ A 2 ) = P ( A 1 2 ∩ A 2 ) − P ( A 1 1 ∩ A 2 ) = P ( A 1 2 ) P ( A 2 ) − P ( A 1 1 ) P ( A 2 ) = P ( A 1 2 ∖ A 1 1 ) P ( A 2 ) P\left( (A_1^2 \setminus A_1^1) \cap A_2 \right) = P(A_1^2 \cap A_2) - P(A_1^1 \cap A_2) = P(A_1^2)P(A_2) - P(A_1^1)P(A_2) = P(A_1^2 \setminus A_1^1)P(A_2)
 P ( ( A 1 2  ∖ A 1 1  ) ∩ A 2  ) = P ( A 1 2  ∩ A 2  ) − P ( A 1 1  ∩ A 2  ) = P ( A 1 2  ) P ( A 2  ) − P ( A 1 1  ) P ( A 2  ) = P ( A 1 2  ∖ A 1 1  ) P ( A 2  ) 
故 A 1 2 ∖ A 1 1 ∈ L 1 A_1^2 \setminus A_1^1 \in \mathcal{L}_1 A 1 2  ∖ A 1 1  ∈ L 1   
(递增并封闭)若 { A 1 k } ⊆ L 1 \{A_1^k\} \subseteq \mathcal{L}_1 { A 1 k  } ⊆ L 1  A 1 k ↑ A 1 A_1^k \uparrow A_1 A 1 k  ↑ A 1  A 2 ∈ A 2 A_2 \in \mathcal{A}_2 A 2  ∈ A 2  P ( A 1 ∩ A 2 ) = lim  k → ∞ P ( A 1 k ∩ A 2 ) = lim  k → ∞ P ( A 1 k ) P ( A 2 ) = P ( A 1 ) P ( A 2 ) P(A_1 \cap A_2) = \lim_{k \to \infty} P(A_1^k \cap A_2) = \lim_{k \to \infty} P(A_1^k)P(A_2) = P(A_1)P(A_2)
 P ( A 1  ∩ A 2  ) = k → ∞ lim  P ( A 1 k  ∩ A 2  ) = k → ∞ lim  P ( A 1 k  ) P ( A 2  ) = P ( A 1  ) P ( A 2  ) 
故 A 1 ∈ L 1 A_1 \in \mathcal{L}_1 A 1  ∈ L 1   
 
因此,L 1 \mathcal{L}_1 L 1  λ \lambda λ A 1 \mathcal{A}_1 A 1  π \pi π A 1 ⊆ L 1 \mathcal{A}_1 \subseteq \mathcal{L}_1 A 1  ⊆ L 1  A 1 , A 2 \mathcal{A}_1, \mathcal{A}_2 A 1  , A 2  π \pi π λ \lambda λ σ ( A 1 ) ⊆ L 1 \sigma(\mathcal{A}_1) \subseteq \mathcal{L}_1 σ ( A 1  ) ⊆ L 1  σ ( A 1 ) \sigma(\mathcal{A}_1) σ ( A 1  ) A 2 \mathcal{A}_2 A 2  
步骤2:同理可证 σ ( A 2 ) \sigma(\mathcal{A}_2) σ ( A 2  ) σ ( A 1 ) \sigma(\mathcal{A}_1) σ ( A 1  ) 
 
定义类似的 λ \lambda λ L 2 \mathcal{L}_2 L 2  σ ( A 2 ) ⊆ L 2 \sigma(\mathcal{A}_2) \subseteq \mathcal{L}_2 σ ( A 2  ) ⊆ L 2  σ ( A 1 ) \sigma(\mathcal{A}_1) σ ( A 1  ) σ ( A 2 ) \sigma(\mathcal{A}_2) σ ( A 2  ) 
步骤3:归纳到一般 n n n 
 
假设对 n − 1 n-1 n − 1 π \pi π σ \sigma σ n n n A 1 , … , A n \mathcal{A}_1, \dots, \mathcal{A}_n A 1  , … , A n  A 2 , … , A n \mathcal{A}_2, \dots, \mathcal{A}_n A 2  , … , A n  A 1 \mathcal{A}_1 A 1  A 2 ∩ ⋯ ∩ A n \mathcal{A}_2 \cap \dots \cap \mathcal{A}_n A 2  ∩ ⋯ ∩ A n  π \pi π π \pi π n = 2 n=2 n = 2 σ ( A 1 ) \sigma(\mathcal{A}_1) σ ( A 1  ) σ ( A 2 ) , … , σ ( A n ) \sigma(\mathcal{A}_2), \dots, \sigma(\mathcal{A}_n) σ ( A 2  ) , … , σ ( A n  ) σ ( A 1 ) , … , σ ( A n ) \sigma(\mathcal{A}_1), \dots, \sigma(\mathcal{A}_n) σ ( A 1  ) , … , σ ( A n  ) 
3. Gaussian Variables and Gaussian Processes 
高斯随机过程在理论概率论和各种应用模型中都发挥着重要作用。我们首先回顾关于高斯随机变量和高斯向量的基本事实。然后我们讨论高斯空间和高斯过程,并建立高斯框架下关于独立性和条件作用的基本性质。最后,我们引入高斯白噪声的概念,它将在下一章中用于给出布朗运动的简单构造。
3.1 Gaussian Random Variables 
在本章中,我们处理定义在概率空间 ( Ω , F , P ) (\Omega, \mathcal{F}, P) ( Ω , F , P ) p ≥ 1 p \geq 1 p ≥ 1 L p ( Ω , F , P ) L^p(\Omega, \mathcal{F}, P) L p ( Ω , F , P ) L p L^p L p ∣ X ∣ p |X|^p ∣ X ∣ p X X X L p L^p L p 
实随机变量 X X X 标准高斯(或正态)变量 ,如果其概率律关于 R \mathbb{R} R 
p X ( x ) = 1 2 π exp  ( − x 2 2 ) p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)
 p X  ( x ) = 2 π  1  exp ( − 2 x 2  ) 
此时,X X X 
E [ e z X ] = e z 2 / 2 , ∀ z ∈ C . E\left[e^{zX}\right] = e^{z^2/2}, \quad \forall z \in \mathbb{C}.
 E [ e z X ] = e z 2 /2 , ∀ z ∈ C . 
为得到该公式(同时验证复 Laplace 变换是 well defined),先考虑 z = λ ∈ R z = \lambda \in \mathbb{R} z = λ ∈ R 
E [ e λ X ] = 1 2 π ∫ R e λ x e − x 2 / 2 d x = e λ 2 / 2 1 2 π ∫ R e − ( x − λ ) 2 / 2 d x = e λ 2 / 2 . E\left[e^{\lambda X}\right] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{\lambda x} e^{- x^2/2} \mathrm{d}x = e^{\lambda^2/2} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(x-\lambda)^2/2} \mathrm{d}x = e^{\lambda^2/2}.
 E [ e λ X ] = 2 π  1  ∫ R  e λ x e − x 2 /2 d x = e λ 2 /2 2 π  1  ∫ R  e − ( x − λ ) 2 /2 d x = e λ 2 /2 . 
该计算确保了对每个 z ∈ C z \in \mathbb{C} z ∈ C E [ e z X ] E\left[e^{zX}\right] E [ e z X ] C \mathbb{C} C z ∈ R z \in \mathbb{R} z ∈ R E [ e z X ] = e z 2 / 2 E\left[e^{zX}\right] = e^{z^2/2} E [ e z X ] = e z 2 /2 z ∈ C z \in \mathbb{C} z ∈ C 
取 z = i ξ z = \mathrm{i}\xi z = i ξ ξ ∈ R \xi \in \mathbb{R} ξ ∈ R X X X 特征函数 :
E [ e i ξ X ] = e − ξ 2 / 2 . E\left[e^{\mathrm{i}\xi X}\right] = e^{-\xi^2/2}.
 E [ e i ξ X ] = e − ξ 2 /2 . 
由展开式
E [ e i ξ X ] = 1 + i ξ E [ X ] + ⋯ + ( i ξ ) n n ! E [ X n ] + O ( ∣ ξ ∣ n + 1 ) , E\left[e^{\mathrm{i}\xi X}\right] = 1 + \mathrm{i}\xi E[X] + \cdots + \frac{(\mathrm{i}\xi)^n}{n!} E[X^n] + O(|\xi|^{n+1}),
 E [ e i ξ X ] = 1 + i ξ E [ X ] + ⋯ + n ! ( i ξ ) n  E [ X n ] + O ( ∣ ξ ∣ n + 1 ) , 
当 ξ → 0 \xi \to 0 ξ → 0 X X X L p L^p L p 1 ≤ p < ∞ 1 \leq p < \infty 1 ≤ p < ∞ n ≥ 1 n \geq 1 n ≥ 1 
E [ X ] = 0 , E [ X 2 ] = 1 E[X] = 0, \quad E[X^2] = 1
 E [ X ] = 0 , E [ X 2 ] = 1 
更一般地,对每个整数 n ≥ 0 n \geq 0 n ≥ 0 
E [ X 2 n ] = ( 2 n ) ! 2 n n ! , E [ X 2 n + 1 ] = 0. E[X^{2n}] = \frac{(2n)!}{2^n n!}, \quad E[X^{2n+1}] = 0.
 E [ X 2 n ] = 2 n n ! ( 2 n )!  , E [ X 2 n + 1 ] = 0. 
若 σ > 0 \sigma > 0 σ > 0 m ∈ R m \in \mathbb{R} m ∈ R Y Y Y N ( m , σ 2 ) \mathcal{N}(m, \sigma^2) N ( m , σ 2 ) 高斯变量 ,如果 Y Y Y Y = σ X + m Y = \sigma X + m Y = σ X + m X X X X X X N ( 0 , 1 ) \mathcal{N}(0, 1) N ( 0 , 1 ) Y Y Y 
p Y ( y ) = 1 σ 2 π exp  ( − ( y − m ) 2 2 σ 2 ) ; p_Y(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y - m)^2}{2\sigma^2}\right);
 p Y  ( y ) = σ 2 π  1  exp ( − 2 σ 2 ( y − m ) 2  ) ; 
(iii) Y Y Y 
E [ e i ξ Y ] = exp  ( i m ξ − σ 2 2 ξ 2 ) . E\left[e^{\mathrm{i}\xi Y}\right] = \exp\left(\mathrm{i}m\xi - \frac{\sigma^2}{2}\xi^2\right).
 E [ e i ξ Y ] = exp ( i m ξ − 2 σ 2  ξ 2 ) . 
于是我们有
E [ Y ] = m , v a r ( Y ) = σ 2 . E[Y] = m, \quad \mathrm{var}(Y) = \sigma^2.
 E [ Y ] = m , var ( Y ) = σ 2 . 
通过推广,若 Y = m Y = m Y = m Y Y Y N ( m , 0 ) \mathcal{N}(m, 0) N ( m , 0 ) 
假设 Y Y Y N ( m , σ 2 ) \mathcal{N}(m, \sigma^2) N ( m , σ 2 ) Y ′ Y^\prime Y ′ \mathcal{N}(m^\prime, \sigma^\prime^2)  分布,且 Y Y Y Y ′ Y^\prime Y ′ Y + Y ′ Y + Y^\prime Y + Y ′ \mathcal{N}(m + m^\prime, \sigma^2 + \sigma^\prime^2)  分布。这是性质(iii)的直接推论。
命题1.1 
设 ( X n ) n ≥ 1 (X_n)_{n \geq 1} ( X n  ) n ≥ 1  n ≥ 1 n \geq 1 n ≥ 1 X n X_n X n  N ( m n , σ n 2 ) \mathcal{N}(m_n, \sigma_n^2) N ( m n  , σ n 2  ) X n X_n X n  L 2 L^2 L 2 X X X X X X N ( m , σ 2 ) \mathcal{N}(m, \sigma^2) N ( m , σ 2 ) m = lim  m n m = \lim m_n m = lim m n  σ = lim  σ n \sigma = \lim \sigma_n σ = lim σ n  L p L^p L p 1 ≤ p < ∞ 1 \leq p < \infty 1 ≤ p < ∞ 
注记 
X n X_n X n  L 2 L^2 L 2 X X X ( X n ) n ≥ 1 (X_n)_{n \geq 1} ( X n  ) n ≥ 1  
证明 
(i) L 2 L^2 L 2 n → ∞ n \to \infty n → ∞ m n = E [ X n ] m_n = E[X_n] m n  = E [ X n  ] E [ X ] E[X] E [ X ] σ n 2 = v a r ( X n ) \sigma_n^2 = \mathrm{var}(X_n) σ n 2  = var ( X n  ) v a r ( X ) \mathrm{var}(X) var ( X ) m = E [ X ] m = E[X] m = E [ X ] σ 2 = v a r ( X ) \sigma^2 = \mathrm{var}(X) σ 2 = var ( X ) ξ ∈ R \xi \in \mathbb{R} ξ ∈ R 
E [ e i ξ X ] = lim  n → ∞ E [ e i ξ X n ] = lim  n → ∞ exp  ( i m n ξ − σ n 2 2 ξ 2 ) = exp  ( i m ξ − σ 2 2 ξ 2 ) , E[e^{\mathrm{i}\xi X}] = \lim_{n \to \infty} E[e^{\mathrm{i}\xi X_n}] = \lim_{n \to \infty} \exp\left(\mathrm{i}m_n\xi - \frac{\sigma_n^2}{2}\xi^2\right) = \exp\left(\mathrm{i}m\xi - \frac{\sigma^2}{2}\xi^2\right),
 E [ e i ξ X ] = n → ∞ lim  E [ e i ξ X n  ] = n → ∞ lim  exp ( i m n  ξ − 2 σ n 2   ξ 2 ) = exp ( i m ξ − 2 σ 2  ξ 2 ) , 
这表明 X X X N ( m , σ 2 ) \mathcal{N}(m, \sigma^2) N ( m , σ 2 ) 
(ii) 由于 X n X_n X n  σ n N + m n \sigma_n N + m_n σ n  N + m n  N N N ( m n ) (m_n) ( m n  ) ( σ n ) (\sigma_n) ( σ n  ) 
sup  n E [ ∣ X n ∣ q ] < ∞ , ∀ q ≥ 1. \sup_n E[|X_n|^q] < \infty, \quad \forall q \geq 1.
 n sup  E [ ∣ X n  ∣ q ] < ∞ , ∀ q ≥ 1. 
由此可得
sup  n E [ ∣ X n − X ∣ q ] < ∞ , ∀ q ≥ 1. \sup_n E[|X_n - X|^q] < \infty, \quad \forall q \geq 1.
 n sup  E [ ∣ X n  − X ∣ q ] < ∞ , ∀ q ≥ 1. 
设 p ≥ 1 p \geq 1 p ≥ 1 Y n = ∣ X n − X ∣ p Y_n = |X_n - X|^p Y n  = ∣ X n  − X ∣ p 0 0 0 L 2 L^2 L 2 q = 2 p q = 2p q = 2 p L 1 L^1 L 1 0 0 0 □ \square □ 
1.2 Gaussian Vectors 
设 E E E d d d E E E R d \mathbb{R}^d R d E = R d E = \mathbb{R}^d E = R d ⟨ u , v ⟩ \langle u, v \rangle ⟨ u , v ⟩ E E E E E E X X X 高斯向量 ,如果对每个 u ∈ E u \in E u ∈ E ⟨ u , X ⟩ \langle u, X \rangle ⟨ u , X ⟩ E = R d E = \mathbb{R}^d E = R d X 1 , … , X d X_1, \dots, X_d X 1  , … , X d  X = ( X 1 , … , X d ) X = (X_1, \dots, X_d) X = ( X 1  , … , X d  ) 
设 X X X E E E m X ∈ E m_X \in E m X  ∈ E E E E q X q_X q X  u ∈ E u \in E u ∈ E 
E [ ⟨ u , X ⟩ ] = ⟨ u , m X ⟩ , E[\langle u, X \rangle] = \langle u, m_X \rangle,
 E [⟨ u , X ⟩] = ⟨ u , m X  ⟩ , 
v a r ( ⟨ u , X ⟩ ) = q X ( u ) . \mathrm{var}(\langle u, X \rangle) = q_X(u).
 var (⟨ u , X ⟩) = q X  ( u ) . 
事实上,设 ( e 1 , … , e d ) (e_1, \dots, e_d) ( e 1  , … , e d  ) E E E X X X X = ∑ j = 1 d X j e j X = \sum_{j=1}^d X_j e_j X = ∑ j = 1 d  X j  e j  X j = ⟨ e j , X ⟩ X_j = \langle e_j, X \rangle X j  = ⟨ e j  , X ⟩ m X = ∑ j = 1 d E [ X j ] e j = ( not. ) E [ X ] m_X = \sum_{j=1}^d E[X_j] e_j \stackrel{(\text{not.})}{=} E[X] m X  = ∑ j = 1 d  E [ X j  ] e j  = ( not. ) E [ X ] u = ∑ j = 1 d u j e j u = \sum_{j=1}^d u_j e_j u = ∑ j = 1 d  u j  e j  
q X ( u ) = ∑ j , k = 1 d u j u k c o v ( X j , X k ) . q_X(u) = \sum_{j,k=1}^d u_j u_k \mathrm{cov}(X_j, X_k).
 q X  ( u ) = j , k = 1 ∑ d  u j  u k  cov ( X j  , X k  ) . 
由于 ⟨ u , X ⟩ \langle u, X \rangle ⟨ u , X ⟩ N ( ⟨ u , m X ⟩ , q X ( u ) ) \mathcal{N}(\langle u, m_X \rangle, q_X(u)) N (⟨ u , m X  ⟩ , q X  ( u )) X X X 
E [ exp  ( i ⟨ u , X ⟩ ) ] = exp  ( i ⟨ u , m X ⟩ − 1 2 q X ( u ) ) . (1.1) E[\exp(\mathrm{i}\langle u, X \rangle)] = \exp\left(\mathrm{i}\langle u, m_X \rangle - \frac{1}{2}q_X(u)\right). \tag{1.1}
 E [ exp ( i ⟨ u , X ⟩)] = exp ( i ⟨ u , m X  ⟩ − 2 1  q X  ( u ) ) . ( 1.1 ) 
命题1.2 
在上述假设下,随机变量 X 1 , … , X d X_1, \dots, X_d X 1  , … , X d  ( c o v ( X j , X k ) ) 1 ≤ j , k ≤ d (\mathrm{cov}(X_j, X_k))_{1 \leq j, k \leq d} ( cov ( X j  , X k  ) ) 1 ≤ j , k ≤ d  q X q_X q X  ( e 1 , … , e d ) (e_1, \dots, e_d) ( e 1  , … , e d  ) 
证明  若随机变量 X 1 , … , X d X_1, \dots, X_d X 1  , … , X d  ( c o v ( X j , X k ) ) j , k = 1 , … , d (\mathrm{cov}(X_j, X_k))_{j, k=1, \dots, d} ( cov ( X j  , X k  ) ) j , k = 1 , … , d  u = ∑ j = 1 d u j e j ∈ E u = \sum_{j=1}^d u_j e_j \in E u = ∑ j = 1 d  u j  e j  ∈ E 
q X ( u ) = ∑ j = 1 d λ j u j 2 , q_X(u) = \sum_{j=1}^d \lambda_j u_j^2,
 q X  ( u ) = j = 1 ∑ d  λ j  u j 2  , 
其中 λ j = v a r ( X j ) \lambda_j = \mathrm{var}(X_j) λ j  = var ( X j  ) 
E [ exp  ( i ∑ j = 1 d u j X j ) ] = ∏ j = 1 d exp  ( i u j E [ X j ] − 1 2 λ j u j 2 ) = ∏ j = 1 d E [ exp  ( i u j X j ) ] , E\left[ \exp\left( \mathrm{i}\sum_{j=1}^d u_j X_j \right) \right] = \prod_{j=1}^d \exp\left(\mathrm{i}u_j E[X_j] - \frac{1}{2}\lambda_j u_j^2\right) = \prod_{j=1}^d E\left[\exp(\mathrm{i}u_j X_j)\right],
 E [ exp ( i j = 1 ∑ d  u j  X j  ) ] = j = 1 ∏ d  exp ( i u j  E [ X j  ] − 2 1  λ j  u j 2  ) = j = 1 ∏ d  E [ exp ( i u j  X j  ) ] , 
这蕴含 X 1 , … , X d X_1, \dots, X_d X 1  , … , X d  □ \square □ 
与二次型 q X q_X q X  E E E γ X \gamma_X γ X  
q X ( u ) = ⟨ u , γ X ( u ) ⟩ q_X(u) = \langle u, \gamma_X(u) \rangle
 q X  ( u ) = ⟨ u , γ X  ( u )⟩ 
(γ X \gamma_X γ X  ( e 1 , … , e d ) (e_1, \dots, e_d) ( e 1  , … , e d  ) ( c o v ( X j , X k ) ) 1 ≤ j , k ≤ d (\mathrm{cov}(X_j, X_k))_{1 \leq j, k \leq d} ( cov ( X j  , X k  ) ) 1 ≤ j , k ≤ d  γ X \gamma_X γ X  γ X \gamma_X γ X  
从现在起,为简化陈述,我们将注意力限制在 中心化高斯向量  上,即满足 m X = 0 m_X = 0 m X  = 0 
定理1.3 
(i) 设 γ \gamma γ E E E X X X γ X = γ \gamma_X = \gamma γ X  = γ 
(ii) 设 X X X ( ε 1 , … , ε d ) (\varepsilon_1, \dots, \varepsilon_d) ( ε 1  , … , ε d  ) E E E γ X \gamma_X γ X  1 ≤ j ≤ d 1 \leq j \leq d 1 ≤ j ≤ d γ X ε j = λ j ε j \gamma_X \varepsilon_j = \lambda_j \varepsilon_j γ X  ε j  = λ j  ε j  
λ 1 ≥ λ 2 ≥ ⋯ ≥ λ r > 0 = λ r + 1 = ⋯ = λ d \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0 = \lambda_{r+1} = \cdots = \lambda_d
 λ 1  ≥ λ 2  ≥ ⋯ ≥ λ r  > 0 = λ r + 1  = ⋯ = λ d  
于是 r r r γ X \gamma_X γ X  
X = ∑ j = 1 r Y j ε j , X = \sum_{j=1}^r Y_j \varepsilon_j,
 X = j = 1 ∑ r  Y j  ε j  , 
其中 Y j Y_j Y j  1 ≤ j ≤ r 1 \leq j \leq r 1 ≤ j ≤ r Y j Y_j Y j  λ j \lambda_j λ j  P X P_X P X  X X X P X P_X P X  ε 1 , … , ε r \varepsilon_1, \dots, \varepsilon_r ε 1  , … , ε r  P X P_X P X  E E E r = d r = d r = d X X X 
p X ( x ) = 1 ( 2 π ) d / 2 det  γ X exp  ( − 1 2 ⟨ x , γ X − 1 ( x ) ⟩ ) . p_X(x) = \frac{1}{(2\pi)^{d/2} \sqrt{\det \gamma_X}} \exp\left(-\frac{1}{2}\langle x, \gamma_X^{-1}(x) \rangle\right).
 p X  ( x ) = ( 2 π ) d /2 det γ X   1  exp ( − 2 1  ⟨ x , γ X − 1  ( x )⟩ ) . 
1.3 高斯过程与高斯空间 
从现在起到本章结束,我们仅考虑 中心化高斯变量 ,且经常省略“中心化”一词。
定义1.4 
(中心化)高斯空间 是 L 2 ( Ω , F , P ) L^2(\Omega, \mathcal{F}, P) L 2 ( Ω , F , P ) 
例如,若 X = ( X 1 , … , X d ) X = (X_1, \dots, X_d) X = ( X 1  , … , X d  ) R d \mathbb{R}^d R d { X 1 , … , X d } \{X_1, \dots, X_d\} { X 1  , … , X d  } 
定义1.5 
设 ( E , E ) (E, \mathcal{E}) ( E , E ) T T T E E E T T T 随机过程  是一族 ( X t ) t ∈ T (X_t)_{t \in T} ( X t  ) t ∈ T  E E E ( E , E ) (E, \mathcal{E}) ( E , E ) E = R E = \mathbb{R} E = R E = B ( R ) \mathcal{E} = \mathcal{B}(\mathbb{R}) E = B ( R ) R \mathbb{R} R Borel σ \sigma σ  。
在此及本书中,我们用 B ( F ) \mathcal{B}(F) B ( F ) F F F σ \sigma σ T T T R + \mathbb{R}_+ R +  
定义1.6 
(实值)随机过程 ( X t ) t ∈ T (X_t)_{t \in T} ( X t  ) t ∈ T  高斯过程 ,若对任意有限个 X t X_t X t  t ∈ T t \in T t ∈ T 
命题1.7 
若 ( X t ) t ∈ T (X_t)_{t \in T} ( X t  ) t ∈ T  X t X_t X t  t ∈ T t \in T t ∈ T L 2 L^2 L 2 由过程 X X X  。
证明  只需注意到由命题1.1,中心化高斯变量的 L 2 L^2 L 2 □ \square □ 
我们现在转向高斯空间中的独立性性质。我们需要以下定义。
定义1.8 
设 H H H ( Ω , F , P ) (\Omega, \mathcal{F}, P) ( Ω , F , P ) 由 H H H σ \sigma σ  ,记为 σ ( H ) \sigma(H) σ ( H ) Ω \Omega Ω ξ ∈ H \xi \in H ξ ∈ H σ \sigma σ σ \sigma σ C \mathcal{C} C Ω \Omega Ω σ ( C ) \sigma(\mathcal{C}) σ ( C ) Ω \Omega Ω C \mathcal{C} C σ \sigma σ 
下一定理表明,在某种意义上,独立性等价于高斯空间中的正交性。这是高斯分布的一个非常特殊的性质。
定理1.9 
设 H H H ( H i ) i ∈ I (H_i)_{i \in I} ( H i  ) i ∈ I  H H H H i H_i H i  i ∈ I i \in I i ∈ I L 2 L^2 L 2 正交 当且仅当 σ \sigma σ σ ( H i ) \sigma(H_i) σ ( H i  ) i ∈ I i \in I i ∈ I 
注记 
向量空间 H i H_i H i  H H H N ( 0 , 1 ) \mathcal{N}(0, 1) N ( 0 , 1 ) X X X X X X ε \varepsilon ε P [ ε = 1 ] = P [ ε = − 1 ] = 1 / 2 P[\varepsilon = 1] = P[\varepsilon = -1] = 1/2 P [ ε = 1 ] = P [ ε = − 1 ] = 1/2 X 1 = X X_1 = X X 1  = X X 2 = ε X X_2 = \varepsilon X X 2  = εX N ( 0 , 1 ) \mathcal{N}(0, 1) N ( 0 , 1 ) E [ X 1 X 2 ] = E [ ε ] E [ X 2 ] = 0 E[X_1 X_2] = E[\varepsilon] E[X^2] = 0 E [ X 1  X 2  ] = E [ ε ] E [ X 2 ] = 0 X 1 X_1 X 1  X 2 X_2 X 2  ∣ X 1 ∣ = ∣ X 2 ∣ |X_1| = |X_2| ∣ X 1  ∣ = ∣ X 2  ∣ ( X 1 , X 2 ) (X_1, X_2) ( X 1  , X 2  ) R 2 \mathbb{R}^2 R 2 
证明 
假设 σ \sigma σ σ ( H i ) \sigma(H_i) σ ( H i  ) i ≠ j i \neq j i  = j X ∈ H i X \in H_i X ∈ H i  Y ∈ H j Y \in H_j Y ∈ H j  
E [ X Y ] = E [ X ] E [ Y ] = 0 , E[XY] = E[X]E[Y] = 0,
 E [ X Y ] = E [ X ] E [ Y ] = 0 , 
故线性空间 H i H_i H i  
反之,假设线性空间 H i H_i H i  σ \sigma σ i 1 , … , i p ∈ I i_1, \dots, i_p \in I i 1  , … , i p  ∈ I σ \sigma σ σ ( H i 1 ) , … , σ ( H i p ) \sigma(H_{i_1}), \dots, \sigma(H_{i_p}) σ ( H i 1   ) , … , σ ( H i p   ) ξ 1 1 , … , ξ n 1 1 ∈ H i 1 , … , ξ 1 p , … , ξ n p p ∈ H i p \xi_1^1, \dots, \xi_{n_1}^1 \in H_{i_1}, \dots, \xi_1^p, \dots, \xi_{n_p}^p \in H_{i_p} ξ 1 1  , … , ξ n 1  1  ∈ H i 1   , … , ξ 1 p  , … , ξ n p  p  ∈ H i p   ( ξ 1 1 , … , ξ n 1 1 ) , … , ( ξ 1 p , … , ξ n p p ) (\xi_1^1, \dots, \xi_{n_1}^1), \dots, (\xi_1^p, \dots, \xi_{n_p}^p) ( ξ 1 1  , … , ξ n 1  1  ) , … , ( ξ 1 p  , … , ξ n p  p  ) j ∈ { 1 , … , p } j \in \{1, \dots, p\} j ∈ { 1 , … , p } { ξ 1 j ∈ A 1 , … , ξ n j j ∈ A n j } \{\xi_1^j \in A_1, \dots, \xi_{n_j}^j \in A_{n_j}\} { ξ 1 j  ∈ A 1  , … , ξ n j  j  ∈ A n j   } σ \sigma σ σ ( H i j ) \sigma(H_{i_j}) σ ( H i j   ) j ∈ { 1 , … , p } j \in \{1, \dots, p\} j ∈ { 1 , … , p } { ξ 1 j , … , ξ n j j } \{\xi_1^j, \dots, \xi_{n_j}^j\} { ξ 1 j  , … , ξ n j  j  } L 2 L^2 L 2 ( η 1 j , … , η m j j ) (\eta_1^j, \dots, \eta_{m_j}^j) ( η 1 j  , … , η m j  j  ) 
( η 1 1 , … , η m 1 1 , η 1 2 , … , η m 2 2 , … , η 1 p , … , η m p p ) (\eta_1^1, \dots, \eta_{m_1}^1, \eta_1^2, \dots, \eta_{m_2}^2, \dots, \eta_1^p, \dots, \eta_{m_p}^p)
 ( η 1 1  , … , η m 1  1  , η 1 2  , … , η m 2  2  , … , η 1 p  , … , η m p  p  ) 
的协方差矩阵是单位矩阵(因为 i ≠ j i \neq j i  = j E [ η i j η l k ] = 0 E[\eta_i^j \eta_l^k] = 0 E [ η i j  η l k  ] = 0 H i H_i H i  H j H_j H j  H H H ( η 1 1 , … , η m 1 1 ) , … , ( η 1 p , … , η m p p ) (\eta_1^1, \dots, \eta_{m_1}^1), \dots, (\eta_1^p, \dots, \eta_{m_p}^p) ( η 1 1  , … , η m 1  1  ) , … , ( η 1 p  , … , η m p  p  ) ( ξ 1 1 , … , ξ n 1 1 ) , … , ( ξ 1 p , … , ξ n p p ) (\xi_1^1, \dots, \xi_{n_1}^1), \dots, (\xi_1^p, \dots, \xi_{n_p}^p) ( ξ 1 1  , … , ξ n 1  1  ) , … , ( ξ 1 p  , … , ξ n p  p  ) □ \square □