日拱一卒。

本文最后更新于 2025年8月10日 下午

数分

不同余项的 Taylor 公式

  1. (Peano 余项)设 f(x)f(x)x0x_0nn 阶可导,则当 xx0x \to x_0 时,有,

f(x)=f(x0)+f(x0)1!(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)n+o((xx0)n)f(x) = f(x_0) + \frac{f^{\prime}(x_0)}{1!}(x-x_0) + \frac{f^{\prime\prime}(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + o((x-x_0)^n)

  1. (Lagrange 余项)设 f(x)f(x) 在区间 IIn+1n+1 阶可导,则对任意 x,x0Ix, x_0 \in I,存在位于 xxx0x_0 之间的实数 ξ\xi 使得,

f(x)=f(x0)+f(x0)1!(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)n+f(n+1)(ξ)(n+1)!(xx0)(n+1)f(x) = f(x_0) + \frac{f^{\prime}(x_0)}{1!}(x-x_0) + \frac{f^{\prime\prime}(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{(n+1)}

  1. (Cauchy余项)设 f(x)f(x) 在区间 IIn+1n+1 阶可导,则对任意 x,x0Ix, x_0 \in I,存在位于 xxx0x_0 之间的实数 ξ\xi 使得,

    f(x)=f(x0)+f(x0)1!(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)n+f(n+1)(ξ)n!(xξ)n(xx0)f(x) = f(x_0) + \frac{f^{\prime}(x_0)}{1!}(x-x_0) + \frac{f^{\prime\prime}(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^{n}(x-x_0)

常用的 Maclaurin 展式

  1. x0x \to 0 时,

ex=1+x+x22!+x33!++xnn!+o(xn)e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + o(x^n)

  1. x0x \to 0 时,

sinx=xx33!+x55!x77!++(1)nx2n1(2n1)!+o(x2n1)\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots + (-1)^n \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1})

cosx=1x22!+x44!x66!++(1)nx2n(2n)!+o(x2n)\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})

  1. x0x \to 0 时,

ln(1+x)=xx22+x33x44++(1)n1xnn+o(xn)\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + (-1)^{n-1} \frac{x^{n}}{n} + o(x^{n})

ln(1x)=xx22x33x44xnn+o(xn)\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots - \frac{x^{n}}{n} + o(x^{n})

  1. x0x \to 0 时,

(1+x)α=1+αx+α(α1)2!x2++α(α1)(αn+1)n!xn+o(xn)(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n + o(x^n)

11+x=1x+x2x3++(1)nxn+o(xn)\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots + (-1)^{n} x^n + o(x^{n})

11x=1+x+x2++xn+o(xn)\frac{1}{1-x} = 1 + x + x^2 + \cdots + x^{n} + o(x^{n})

  1. x0x \to 0 时,

arctanx=xx33+x55x77++(1)nx2n+1(2n+1)!+o(x2n+1)\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})

Wallis 公式 与 Stirling 公式

Wallis 积分公式

(1) 单项情形

定义

In=0π2sinnxdx=0π2cosnxdx={(n1)!!n!!π2,n 为偶数,(n1)!!n!!,n 为奇数.I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \cos^n x \, dx = \begin{cases} \dfrac{(n-1)!!}{n!!} \cdot \dfrac{\pi}{2}, & n \text{ 为偶数}, \\[6pt] \dfrac{(n-1)!!}{n!!}, & n \text{ 为奇数}. \end{cases}

证明: 首先,对于 In=0π2cosnxdxI_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx,令 t=π2xt = \frac{\pi}{2} - x

In=π20cosn(π2t)d(π2t)=0π2sinntdtI_n = \int_{\frac{\pi}{2}}^0 \cos^n \left( \frac{\pi}{2} - t \right) d\left( \frac{\pi}{2} - t \right) = \int_0^{\frac{\pi}{2}} \sin^n t \, dt

下面考虑 sinx\sin x 的情形即可。利用分部积分,

In=0π2sinnxdx=0π2sinn1xdcosx=sinn1xcosx0π2+(n1)0π2cos2xsinn2xdx=(n1)0π2sinn2xdx(n1)0π2sinnxdx=(n1)In2(n1)In\begin{align*} I_n &= \int_0^{\frac{\pi}{2}} \sin^n x \, dx = -\int_0^{\frac{\pi}{2}} \sin^{n-1} x \, d\cos x \\ &= -\sin^{n-1} x \cdot \cos x \bigg|_0^{\frac{\pi}{2}} + (n - 1) \cdot \int_0^{\frac{\pi}{2}} \cos^2 x \cdot \sin^{n-2} x \, dx \\ &= (n - 1) \cdot \int_0^{\frac{\pi}{2}} \sin^{n-2} x \, dx - (n - 1) \cdot \int_0^{\frac{\pi}{2}} \sin^n x \, dx \\ &= (n - 1) \cdot I_{n-2} - (n - 1) \cdot I_n \end{align*}

所以,

In=n1nIn2=n1nn3n2In4=={(n1)!!n!!I0,n 为偶数,(n1)!!n!!I1,n 为奇数.\begin{align*} I_n &= \frac{n-1}{n} \cdot I_{n-2} = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot I_{n-4} = \cdots \\ &= \begin{cases} \dfrac{(n-1)!!}{n!!} \cdot I_0 , & n \text{ 为偶数}, \\[6pt] \dfrac{(n-1)!!}{n!!} \cdot I_1 , & n \text{ 为奇数}. \end{cases} \end{align*}

I0=0π21dx=π2,I1=0π2sinxdx=1I_0 = \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}, \quad I_1 = \int_0^{\frac{\pi}{2}} \sin x \, dx = 1

故,

In={(n1)!!n!!π2,n 为偶数,(n1)!!n!!,n 为奇数.I_n = \begin{cases} \dfrac{(n-1)!!}{n!!} \cdot \dfrac{\pi}{2} , & n \text{ 为偶数}, \\[6pt] \dfrac{(n-1)!!}{n!!} , & n \text{ 为奇数}. \end{cases}

(2) 二元情形

定义

Im,n=0π2sinmxcosnxdx={(m1)!!(n1)!!(m+n)!!π2,m,n 均为偶数,(m1)!!(n1)!!(m+n)!!,否则.I_{m,n} = \int_0^{\frac{\pi}{2}} \sin^m x \cdot \cos^n x \, dx = \begin{cases} \dfrac{(m-1)!! \cdot (n-1)!!}{(m+n)!!} \cdot \dfrac{\pi}{2}, & m, n \text{ 均为偶数}, \\[6pt] \dfrac{(m-1)!! \cdot (n-1)!!}{(m+n)!!}, & \text{否则}. \end{cases}

证明:

Im,n=0π2sinmxcosnxdx=0π2sinmxcosn1xd(sinx)=sinm+1xcosn1x0π20π2sinxd(sinmxcosn1x)=m0π2sinmxcosnxdx+(n1)0π2sinm+2xcosn2xdx=mIm,n+(n1)Im+2,n2\begin{align*} I_{m,n} &= \int_0^{\frac{\pi}{2}} \sin^m x \cdot \cos^n x \, dx = \int_0^{\frac{\pi}{2}} \sin^m x \cdot \cos^{n-1} x \, d(\sin x) \\ &= \sin^{m+1} x \cdot \cos^{n-1} x \bigg|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin x \, d(\sin^m x \cdot \cos^{n-1} x) \\ &= -m \cdot \int_0^{\frac{\pi}{2}} \sin^m x \cdot \cos^n x \, dx + (n - 1) \cdot \int_0^{\frac{\pi}{2}} \sin^{m+2} x \cdot \cos^{n-2} x \, dx \\ &= -m \cdot I_{m,n} + (n - 1) \cdot I_{m+2,n-2} \end{align*}

得到递归式,

Im,n=n1m+1Im+2,n2I_{m,n} = \frac{n-1}{m+1} \cdot I_{m+2,n-2}

n为偶数的情形

n=2kn = 2k,

Im,n=n1m+1Im+2,n2=n1m+1n3m+3Im+4,n4==(n1)(n3)1(m+1)(m+3)(m+n1)Im+n\begin{align*} I_{m,n} &= \frac{n-1}{m+1} \cdot I_{m+2,n-2} = \frac{n-1}{m+1} \cdot \frac{n-3}{m+3} \cdot I_{m+4,n-4} = \dots \\ &= \frac{(n-1)\cdot(n-3)\cdot\dots\cdot1}{(m+1)\cdot(m+3)\cdot\dots\cdot(m+n-1)} \cdot I_{m+n} \end{align*}

带入一元情况,

Im,n={(m1)!!(n1)!!(m+n)!!π2,m也为偶数(m1)!!(n1)!!(m+n)!!,否则I_{m,n} = \begin{cases} \dfrac{(m-1)!!\cdot(n-1)!!}{(m+n)!!} \cdot \dfrac{\pi}{2} &, \, m\text{也为偶数} \\[6pt] \dfrac{(m-1)!!\cdot(n-1)!!}{(m+n)!!} &, \, \text{否则} \end{cases}

n为奇数的情形

n=2k+1n = 2k+1,则

Im,n=(n1)(n3)2(m+1)(m+3)(m+n2)Im+n1,1I_{m,n} = \frac{(n-1)\cdot(n-3)\cdot\cdots\cdot2}{(m+1)\cdot(m+3)\cdot\cdots\cdot(m+n-2)} \cdot I_{m+n-1,1}

单独计算第一项,

Im+n1,1=0π2sinm+n1xcosxdx=0π2sinm+n1xd(sinx)=1m+nI_{m+n-1,1} = \int_0^{\frac{\pi}{2}} \sin^{m+n-1} x \cdot \cos x \, dx = \int_0^{\frac{\pi}{2}} \sin^{m+n-1} x \, d(\sin x) = \frac{1}{m+n}

带回,

Im,n=(n1)(n3)2(m+1)(m+3)(m+n2)1m+n=(m1)!!(n1)!!(m+n)!!I_{m,n} = \frac{(n-1)\cdot(n-3)\cdot\cdots\cdot2}{(m+1)\cdot(m+3)\cdot\cdots\cdot(m+n-2)} \cdot \frac{1}{m+n} = \frac{(m-1)!!\cdot(n-1)!!}{(m+n)!!}

Wallis 公式

来自 浙江大学 2023 微积分 II 课程笔记

n+n \to +\infty 时,(2n)!!(2n1)!!nπ\dfrac{(2n)!!}{(2n-1)!!} \sim \sqrt{n\pi};更具体地,

limn[(2n)!!(2n1)!!]212n+1=π2\lim_{n \to \infty} \left[ \frac{(2n)!!}{(2n-1)!!} \right]^2 \frac{1}{2n+1} = \frac{\pi}{2}

证明:x(0,π2)x \in (0, \frac{\pi}{2}),由 sinx(0,1)\sin x \in (0,1)

sin2n+1x<sin2nx<sin2n1x\sin^{2n+1} x < \sin^{2n} x < \sin^{2n-1} x

xx[0,π2][0, \frac{\pi}{2}] 上积分,得:

0π2sin2n+1xdx<0π2sin2nxdx<0π2sin2n1xdx\int_0^{\frac{\pi}{2}} \sin^{2n+1} x \, dx < \int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx < \int_0^{\frac{\pi}{2}} \sin^{2n-1} x \, dx

Wallis 积分公式

(2n)!!(2n+1)!!<(2n1)!!(2n)!!π2<(2n2)!!(2n1)!!\frac{(2n)!!}{(2n+1)!!} < \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2} < \frac{(2n-2)!!}{(2n-1)!!}

定义:

An:=[(2n)!!(2n1)!!]212n+1,Bn:=[(2n)!!(2n1)!!]212nA_n := \left[ \frac{(2n)!!}{(2n-1)!!} \right]^2 \frac{1}{2n+1}, \quad B_n := \left[ \frac{(2n)!!}{(2n-1)!!} \right]^2 \frac{1}{2n}

注意到,

An+1=[(2n+2)!!(2n+1)!!]212n+3An+1An=(2n+2)2(2n+1)(2n+3)>1A_{n+1} = \left[ \frac{(2n+2)!!}{(2n+1)!!} \right]^2 \frac{1}{2n+3} \Rightarrow \frac{A_{n+1}}{A_n} = \frac{(2n+2)^2}{(2n+1)(2n+3)} >1

Bn+1=[(2n+2)!!(2n+1)!!]212n+2BnBn+1=(2n+1)2(2n)(2n+2)>1B_{n+1} = \left[ \frac{(2n+2)!!}{(2n+1)!!} \right]^2 \frac{1}{2n+2} \Rightarrow \frac{B_n}{B_{n+1}} = \frac{(2n+1)^2}{(2n)(2n+2)} >1

则上述不等式可改写为:

An<An+1<<π2<<Bn+1<BnA_n < A_{n+1} < \cdots < \frac{\pi}{2} < \cdots < B_{n+1} < B_n

数列 {An}\{A_n\} 严格单增有上界,{Bn}\{B_n\} 严格单减有下界,二者都存在极限。

计算 BnAnB_n - A_n(夹逼之),

BnAn=[(2n)!!(2n1)!!]2(12n12n+1)=[(2n)!!(2n1)!!]212n(2n+1)=An12n<π212n0(n)\begin{align*} B_n - A_n &= \left[ \frac{(2n)!!}{(2n-1)!!} \right]^2 \left( \frac{1}{2n} - \frac{1}{2n+1} \right) \\ &= \left[ \frac{(2n)!!}{(2n-1)!!} \right]^2 \cdot \frac{1}{2n(2n+1)} \\ &= A_n \cdot \frac{1}{2n} \\ &< \frac{\pi}{2} \cdot \frac{1}{2n} \to 0 \quad (n \to \infty) \end{align*}

于是有

limnAn=π2=limnBn\lim_{n \to \infty} A_n = \frac{\pi}{2} = \lim_{n \to \infty} B_n

结合 AnA_n 的定义,即有,

limn[(2n)!!(2n1)!!]212n+1=π2\lim_{n \to \infty} \left[ \frac{(2n)!!}{(2n-1)!!} \right]^2 \frac{1}{2n+1} = \frac{\pi}{2}

Stirling 公式

证明来自 香蕉空间

Stirling 公式:nZ+n \in \mathbb{Z}_+ 有,

n!=2πn(ne)necnn! = \sqrt{2\pi n} \left( \frac{n}{e} \right)^n e^{c_n}

其中 cnc_n 满足:

0<cn<112n0 < c_n < \frac{1}{12n}

证明
nZ+n \in \mathbb{Z}_+ 定义数列

dn=log(n!)(n+12)logn+nd_n = \log(n!) - \left(n + \frac{1}{2}\right)\log n + n

利用 Taylor 展开计算 dndn+1d_n - d_{n+1}

dndn+1=log(n+1)+(n+1+12)log(n+1)(n+12)logn1=(n+12)log(n+1n)1=2n+12log(1+12n+1112n+1)1=2n+12k=022k+1(12n+1)2k+11=k=112k+11(2n+1)2k\begin{align*} d_n - d_{n+1} &= -\log(n+1)+(n+1+\frac{1}{2})\log(n+1)-(n+\frac{1}{2})\log n - 1\\ &= (n+\frac{1}{2}) \log (\frac{n+1}{n}) -1\\ &= \frac{2n + 1}{2} \log\left( \frac{1 + \frac{1}{2n + 1}}{1 - \frac{1}{2n + 1}} \right) -1\\ &= \frac{2n + 1}{2} \sum_{k=0}^\infty \frac{2}{2k+1} \left( \frac{1}{2n+1}\right)^{2k+1} -1\\ &= \sum_{k=1}^\infty \frac{1}{2k + 1} \cdot \frac{1}{(2n + 1)^{2k}} \end{align*}

于是放缩得到:

0<dndn+1<k=1131(2n+1)2k=112n(n+1)=112n112(n+1)0 < d_n - d_{n+1} < \sum_{k=1}^\infty \frac{1}{3} \cdot \frac{1}{(2n + 1)^{2k}} = \frac{1}{12n(n+1)} = \frac{1}{12n} - \frac{1}{12(n + 1)}

也即,

dn112n<dn+1112(n+1)<<dn+1<dnd_n - \frac{1}{12n} < d_{n+1} - \frac{1}{12(n+1)} < \cdots < d_{n+1} < d_n

dnd_n 递减而 dn112nd_n - \frac{1}{12n} 递增。于是有下述极限存在:

limn(dn112n)=C=limndn\lim_{n \to \infty} \left( d_n - \frac{1}{12n} \right) = C = \lim_{n \to \infty} d_n

更精确地有:

0<cn=dnC<112n0 < c_n = d_n - C < \frac{1}{12n}

现只要证明

C=12log(2π)eC=2πC = \frac{1}{2}\log(2\pi) \Leftrightarrow e^C = \sqrt{2\pi}

而根据 Wallis 公式,我们有:

π2=limn[(2n)!!(2n1)!!]212n+1=limn(2n)!!(2n1)!!12n+1=limn[(2n)!!]2(2n1)!!(2n)!!12n+1=limn(2nn!)2(2n)!2n+1\begin{align*} \sqrt{\frac{\pi}{2}} &= \sqrt{\lim_{n \to \infty} \left[ \frac{(2n)!!}{(2n-1)!!}\right]^2 \frac{1}{2n+1}}= \lim_{n \to \infty} \frac{(2n)!!}{(2n-1)!!} \frac{1}{\sqrt{2n+1}} \\ &= \lim_{n \to \infty} \frac{[(2n)!!]^2}{(2n-1)!!(2n)!!} \frac{1}{\sqrt{2n+1}} = \lim_{n \to \infty} \frac{(2^n n!)^2}{(2n)! \sqrt{2n + 1}} \end{align*}

结合:

limnedn=limnn!(en)n1n=eCn!n(ne)neC\lim_{n \to \infty} e^{d_n} = \lim_{n \to \infty} n! \left( \frac{e}{n} \right)^n \frac{1}{\sqrt{n}} = e^C \Rightarrow n! \sim \sqrt{n} \left( \frac{n}{e} \right)^n e^C

有,

π2=limn(2nn!)2(2n)!2n+1=limn22nn(ne)2ne2C2n(2ne)2neC2n+1=eC2\sqrt{\frac{\pi}{2}} = \lim_{n \to \infty} \frac{(2^n n!)^2}{(2n)! \sqrt{2n + 1}} = \lim_{n \to \infty} \frac{2^{2n} n \left( \frac{n}{e}\right)^{2n} e^{2C}}{\sqrt{2n} \left( \frac{2n}{e} \right)^{2n} e^C \sqrt{2n+1}} = \frac{e^C}{2}

高代

题目

题目1

一个 nn 阶行列式,如果它的元素满足 aij=aji, i,j=1,2,,na_{ij} = -a_{ji},\ i,j = 1,2,\cdots,n,就称为反对称行列式。证明:奇数阶反对称行列式等于 0\boldsymbol{0}

要证明奇数阶反对称行列式的值为零,可按以下步骤推导:

D=0a12a13a1na120a23a2na13a230a3na1na2na3n0=0a12a13a1na120a23a2na13a230a3na1na2na3n0=(1)n0a12a13a1na120a23a2na13a230a3na1na2na3n0=(1)nD=D\begin{align*} D &= \begin{vmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ -a_{12} & 0 & a_{23} & \cdots & a_{2n} \\ -a_{13} & -a_{23} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1n} & -a_{2n} & -a_{3n} & \cdots & 0 \\ \end{vmatrix} = \begin{vmatrix} 0 & -a_{12} & -a_{13} & \cdots & -a_{1n} \\ a_{12} & 0 & -a_{23} & \cdots & -a_{2n} \\ a_{13} & a_{23} & 0 & \cdots & -a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & 0 \\ \end{vmatrix} \\ &= (-1)^{n} \begin{vmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ -a_{12} & 0 & a_{23} & \cdots & a_{2n} \\ -a_{13} & -a_{23} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1n} & -a_{2n} & -a_{3n} & \cdots & 0 \\ \end{vmatrix} = (-1)^n D = -D \end{align*}

D=0D = 0.

题目2

Lagrange 插值多项式的唯一性。

求证:给定一组数据 {(xi,yi),1in+1}\{(x_i, y_i),\, 1 \leq i \leq n+1\},则唯一存在一个 nn 次多项式

P(x)=k=0nakxk,P(x) = \sum_{k=0}^n a_k x^k,

使得

P(xi)=yi,1in+1.P(x_i) = y_i,\, 1 \leq i \leq n+1.

证明:P(xi)=yi,1in+1P(x_i) = y_i,\, 1 \leq i \leq n+1 代入 k=0nakxk=y\sum_{k=0}^n a_k x^k = y,得到线性方程组:

{a0+a1x1++anx1n=y1a0+a1x2++anx2n=y2a0+a1xn+1++anxn+1n=yn+1\begin{cases} a_0 + a_1 x_1 + \cdots + a_n x_1^n = y_1 \\ a_0 + a_1 x_2 + \cdots + a_n x_2^n = y_2 \\ \cdots\cdots \\ a_0 + a_1 x_{n+1} + \cdots + a_n x_{n+1}^n = y_{n+1} \end{cases}

该方程组的系数行列式为 Vandermonde行列式

D=1i<jn+1(xjxi)0.D = \prod_{\substack{1 \leq i < j \leq n+1}} (x_j - x_i) \neq 0.

Cramer 法则,系数 a0,a1,,ana_0, a_1, \cdots, a_n 可唯一确定:

ak=DkD,Dk=j=1n+1(1)k+1+jAjkyj(0kn)a_k = \frac{D_k}{D},\quad D_k = \sum_{j=1}^{n+1} (-1)^{k+1+j} A_{jk} y_j \quad (0 \leq k \leq n)

此处 AjkA_{jk} 是缺项的 Vandermonde 行列式。

另:多项式 P(x)P(x) 也可通过 拉格朗日插值公式 直接构造:

P(x)=j=1n+1((x1x)(x2x)(xj1x)(xj+1x)(xn+1x)(x1xj)(x2xj)(xj1xj)(xj+1xj)(xn+1xj))yj=j=1n+1(i=1,ijn+1xxixjxi)yj.\begin{align*} P(x) &= \sum_{j=1}^{n+1} \left( \frac{(x_1 - x)(x_2 - x) \cdots (x_{j-1} - x)(x_{j+1} - x) \cdots (x_{n+1} - x)}{(x_1 - x_j)(x_2 - x_j) \cdots (x_{j-1} - x_j)(x_{j+1} - x_j) \cdots (x_{n+1} - x_j)} \right) y_j \\ &= \sum_{j=1}^{n+1} \left( \prod_{\substack{i=1, \\ i \neq j}}^{n+1} \frac{x - x_i}{x_j - x_i} \right) y_j. \end{align*}

行列式的基本性质

  1. 转置不变性
    行列式的转置(行与列互换)值不变,即

    D=DT,其中 DT=det(aji)D = D^T, \quad \text{其中 } D^T = \det(a_{ji})

  2. 行公因子提取
    若第 ii 行(记为 rir_i)所有元素有公因子 kk,则公因子可提取到行列式外:

    DkrikD D \xrightarrow{kr_i} kD

    (仅对某一行提取公因子,列同理)。

  3. 行和分解性
    若第 ii 行的每个元素可表示为两数之和(如 aik=bik+cika_{ik} = b_{ik} + c_{ik}),则行列式可分解为两个行列式之和:

    bi1+ci1bin+cin=bi1bin+ci1cin\begin{vmatrix} \vdots & \vdots & \vdots \\ b_{i1}+c_{i1} & \cdots & b_{in}+c_{in} \\ \vdots & \vdots & \vdots \end{vmatrix} = \begin{vmatrix} \vdots & \vdots & \vdots \\ b_{i1} & \cdots & b_{in} \\ \vdots & \vdots & \vdots \end{vmatrix} + \begin{vmatrix} \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{in} \\ \vdots & \vdots & \vdots \end{vmatrix}

    (仅某一行分解,其余行不变)。

  4. 行对换的反号性:交换第 ii 行与第 jj 行(记为 rirjr_i \leftrightarrow r_j),行列式值反号:

    DrirjDD \xrightarrow{r_i \leftrightarrow r_j} -D

    • 推论1:若行列式有两行完全相同,则 D=0D = 0
    • 推论2:若行列式有两行成比例(一行是另一行的 kk 倍),则 D=0D = 0
  5. 行操作不变性
    将第 ii 行的 kk 倍加到第 jj 行上(记为 rj+krir_j + kr_i),行列式值不变:

    Drj+kriDD \xrightarrow{r_j + kr_i} D

    (列操作同理,值也不变)。

  6. 按行展开:行列式可按任意一行展开求值。AijA_{ij} 是元素 (i,j)(i,j) 的代数余子式,对第 ii 行(1in1 \leq i \leq n)有:

D=ai1Ai1+ai2Ai2++ainAin=k=1naikAikD = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in} = \sum_{k=1}^n a_{ik}A_{ik}

  • 推论1:若取第 ii 行元素与第 jj 行的代数余子式对应相乘再求和:

k=1naikAjk=Dδij,δij={1,i=j,0,ij.\sum_{k=1}^n a_{ik}A_{jk} = D\delta_{ij}, \quad \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}

  1. Cramer 法则:如果 n×nn \times n 线性方程组

    j=1naijxj=bi,i=1,2,,n,\sum_{j=1}^n a_{ij}x_j = b_i, \quad i = 1, 2, \cdots, n,

    系数行列式 D=det(aij)0D = \det(a_{ij}) \neq 0,则该方程组 存在唯一解

    xj=DjD,j=1,2,,n,x_j = \frac{D_j}{D}, \quad j = 1, 2, \cdots, n,

    其中 DjD_j 是将系数行列式 DDjj替换为常数项 b1,b2,,bnb_1, b_2, \cdots, b_n 后得到的 nn 阶行列式,即:

    Dj=a11a1,j1b1a1,j+1a1na21a2,j1b2a2,j+1a2nan1an,j1bnan,j+1ann,j=1,2,,n. D_j = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & b_1 & a_{1,j+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2,j-1} & b_2 & a_{2,j+1} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & b_n & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}, \quad j = 1, 2, \cdots, n.

    • 推论:Lagrange 插值多项式的唯一性

每日一题Day003
http://dbqdss.github.io/2025/08/07/数学/每日一题/20250807每日一题/
作者
失去理想的獾
发布于
2025年8月7日
许可协议